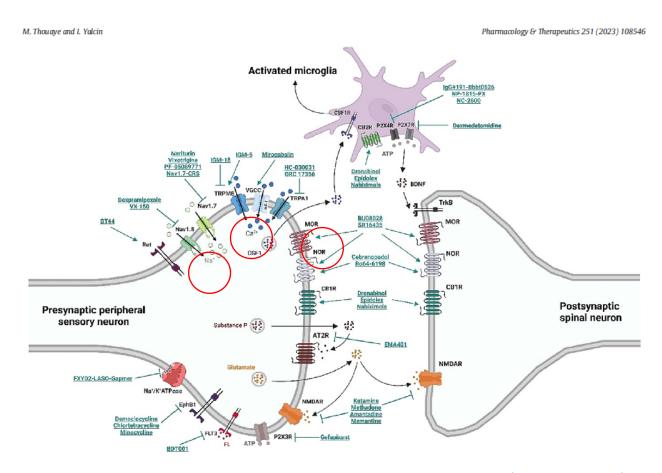
Bewährtes und Neues der schmerzmodulierenden Medikamente

Symposium Wirbelsäulenzentrum 27.02.2025

Daniel Friis

Leiter Schmerzambulatorium
Diagnostische und therapeutische Schmerzmedizin
Institut für Anästhesiologie und Perioperative Medizin



Therapie Grundsätze

- Kurative oder kausale Massnahmen potentiellen Ursachen suchen Kausale Therapien sind immer effizienter als symptomatische!
- Medikamente (symptomatische Therapie) eintitrieren und lange genug beibehalten (Wochen)
- Erwartung (Schmerzreduktion -- Schmerzfreiheit)
- Anpassung der Therapie unter Beachtung der Nebenwirkungsprofile

Schmerzmodulation

(Thouaye, 2023)

Trizyklische Antidepressiva (TCA)

• Amitryptilin (Saroten), Trimipramin (Surmontil), Clomipramin (Anafranil)

Selektive duale Serotonin- und Noradrenalin Wiederaufnahmehemmer (SNRI)

Duloxetin, Venlofaxin

Antikonvulsiva vom

Na-Kanal-Typ: Carbamazepin und Oxycarbazepin

• Ca- Kanal-Typ: Pregabalin und Gabapentin

Trizyklische Antidepressiva (TCA)

• Amitryptilin (Saroten®), Trimipramin (Surmontil®), Clomipramin (Anafranil®)

Wiederaufnahme von Noradrenalin (NA) und Serotonin (5-HT) aus dem synaptischen Spalt vermindert → höhere Konzentration von NA und 5 HT im ZNS. Fazilitiert die deszendierende Inhibition.

- Wirksam: postzosterische Neuralgie, diabetische PNP, poststroke Schmerz u.v.a.m..
 TCA können bei fast allen neuropathischen Schmerztypen eingesetzt werden.
- **Amitryptilin:** Zieldosis bis 50 mg/d. Einmaldosis spätabends. Beginn mit 10 mg, langsam auftitrieren.
- Trimipramin: Zieldosis bis 50 -75 mg/d. Einmaldosis spätabends. Beginn mit 10-20 mg, langsam auftitrieren (Tropfen).
- **Nebenwirkung: leider oft limitierend!** Mundtrockenheit (anticholinerg), Sedation, orthostatische Dysregulation, Harnverhalt, Hang-over, Glaukom, AV-Block (Cave bei älteren Patienten, EKG-Kontrolle).

Selektive duale Serotonin- und Noradrenalin Wiederaufnahmehemmer (SNRI)

Duloxetin (Cymbalta), Venlofaxin (Efexor)

Ähnlich wie TCA. Weniger NW, da fehlende rezeptorblockierende Wirkung

Duloxetin

Wirksam: diabetische PNP, Fibromyalgiesyndrom, chronische Lumbago.

Dosis: Beginn mit 30 mg, Zieldosis 60 mg (90 mg) Morgens geben, wirkt

antriebssteigernd

NW: Harnverhalt, Inappetenz, Nausea, Obstipation, Mundtrockenheit, Schwitzen

Venlafaxin

Wirksam: diabetische PNP (3), schmerzhafte PNP, Postmastektomie-Syndrom

Dosis: Beginn 37.5 mg. Zieldosis 75 - 150 mg/d.

NW: Nausea, Schlafstörungen, Unruhe

(Wernicke et al., 2006; Choy et al., 2009)

Antikonvulsiva vom Na-Kanal-Typ

Carbamazepin (Tegretol), Oxcarbazepin (Trileptal, Apydan)

Membranstabilisierend, Unterdrückung ektoper Impulse, zusätzlich GABA-erge Wirkung.

Carbamazepin

- 1. Wahl bei Trigeminusneuralgie. Ansonsten kaum mehr zu empfehlen bei neuropathischen Schmerzen aufgrund der dürftigen Studienlage.
- Bei schwersten Exazerbationen einer Trigeminisneuralgie, Schnellaufsättigung mit Phenytoin erwägen (15 mg/kg über 4 h)
- **Dosis:** Beginn 200 400 mg. Empfehlung: langsam steigern auf 3- 4x 200mg. Zieldosis (1200 mg/d)
- **NW:** Schwindel, Kopfschmerzen, Ataxie Schläfrigkeit, Diplopie, Erbrechen und Nausea, Hautallergie

Oxcarbazepin

- Dosis: Beginn 150 300 mg. Empfehlung: langsam steigern auf 2x 300mg. Zieldosis (600 mg/d)
- NW: Schwindel, Kopfschmerzen, Ataxie Schläfrigkeit, Diplopie, Erbrechen und Nausea, Hautallergie

Antikonvulsiva vom Ca-Kanal-Typ

Pregabalin (Lyrica®), Gabapentin (Neurontin®)

Selektiv an die präsynaptischen spannungsabhängiger Kalziumkanäle und reduziert bei neuronalen Übererregungszuständen den Kalziumeinstrom in die Neurone. Die Freisetzung exzitatorischer Neurotransmitter wie z.B. Substanz P oder Glutamat wird vermindert.

Wirksam: diabetische PNP, postzosterische Neuralgie, Schmerzen nach Rückenmarksläsionen und Fibromyalgie.

Pregabalin: Dosis: Beginn 25-75 mg abends. Ziel – Tag 2 x 75 mg/d, ggf. Aufdosierung auf 2 x 150 mg/d oder 2 x 300 mg/d. (Empfehlung: Langsam in 25mg Schritten erhöhen, ggf. Einahme 3x/d)

NW: Schwindel, Benommenheit, Schläfrigkeit, periphere Oedeme, akute Depression. Dosisreduktion bei Niereninsuffizienz.

Gabapentin: Dosis: Beginn 100 - 300 mg. Ziel 3x 600 mg/d, ggf. Aufdosierung bis max. 3600 mmg/d (Empfehlung: Langsam in 100 mg Schritten tägl. erhöhen)

NW: Schwindel, Benommenheit, Schläfrigkeit, Dosisreduktion bei Leberinsuffizienz.

Capsaicin (Qutenza)

Extrakt aus rotem Pfeffer

- Peripherer Wirkmechanismus: Vanilloid-Rezeptor Antagonist (TRPV-1), Substanz P-Speicher werden entleert, axonaler Substanz P-Transport- und Speicherung blockiert. Reversibler Funktionsausfall der Nozizeptoren.
- 2. Initial brennender Schmerz durch anfängliche Reizung der C-Fasern. **Trick**: Vor ersten Applikationen Lokalanästhetikum (EMLA) auftragen. **Nicht vergessen**: Handschuhe mitverschreiben zur Salbenapplikation. Kontakt mit Schleimhäuten vermeiden.
- 3. Als 0.075%ige Salbe 4 x täglich: Dauer 4-6 Wochen
- 4. Wirksam bei postzosterischer Neuralgie und beim Postmastektomiesyndrom, wahrscheinlich auch bei diabetischer Neuropathie (hier kontroverse Studienlage)

Schmerzmodulation

 Table 2

 Non exhaustive list of new clinical targets for the treatment of neuropathic pain.

	Drug	Pharmacology	Dose range	Type of pain	Clinical phase
New clinical drugs					
Sodium channels	Vixotrigine	Nav1.7 blockers	400 mg twice daily	Small fiber neuropathy	Phase II
blockers	PF-05089771		150 mg twice daily	Diabetic neuropathy	Phase II
	BIIBO95		Not provided	Healthy volunteers and diabetic neuropathy	Phase I
	GDC-0276		15-540 mg twice daily	Healthy volunteers	Phase I
					(discontinued)
	VX 150	Nav1.8 blocker	1250 mg/day	Small fiber neuropathy	Phase II
P2XRs blockers	Gefapixant	P2X3 antagonist	50-300 mg/day	Pain associated with interstitial cystitis	Phase II
	NC-2600	P2X4 antagonist	Not provided	Not provided	Phase I
NMDA blockers	Ketamine	NMDA antagonist	Intravenously infusions – subanesthetic dose	Chronic pain (not specified)	Observational study
TRPA1 blockers	GRC 17356	TRPA1 antagonist	Not provided	Diabetic neuropathy	Phase II (discontinued)
RTK modulators	Tanezumab	Anti-NGF monoclonal antibodies	20 mg every 8 weeks	Diabetic neuropathy	Phase II
NOR modulator	Cebrenopadol	NOR agonist	100-600 µg/day	Diabetic neuropathy	Phase II
AT2Rs blocker	EMA401	AT2Rs antagonist	Not provided	Diabetic neuropathy	Phase II
Antidepressants	Mirogabalin	Gabapentinoid	10-30 mg/day	Diabetic neuropathy & postherpetic neuralgia	Phase III
Cannabinoids	Dronabinol	THC	10 mg/day	Diabetic neuropathy	Phase II
	Epidolex	CBD	800 mg/day		
	Nabiximols	THC + CBD	10.8 mg/day THC + 10 mg/day CBD		

Abbreviations: Angiotensin II Type 2 Receptors (AT2Rs); Cannabidiol (CBD); Nerve Growth Factor (NGF); N-Methyl-p-Aspartate Receptor (NMDAR); Nociceptin Opioid Receptor (NOR); Purinergic receptors (P2XRs); Receptors Tyrosine Kinase (RTKs); Transient Receptor Potential Ankyrin 1 (TRPA1); Voltage gated sodium channels (Nav); \(\Delta 9 - Tetrahydrocannabinol (THC). \)

3

(Thouaye 2023)

Trizyklische Antidepressiva (TCA)

- Amitryptilin, Trimipramin, Clomipramin

Selektive duale Serotonin- und Noradrenalin Wiederaufnahmehemmer (SNRI)

- Duloxetin, Venlofaxin

Antikonvulsiva vom

Na-Kanal-Typ: Carbamazepin und Oxycarbazepin

Ca- Kanal-Typ: Pregabalin und Gabapentin

Andere Optionen:

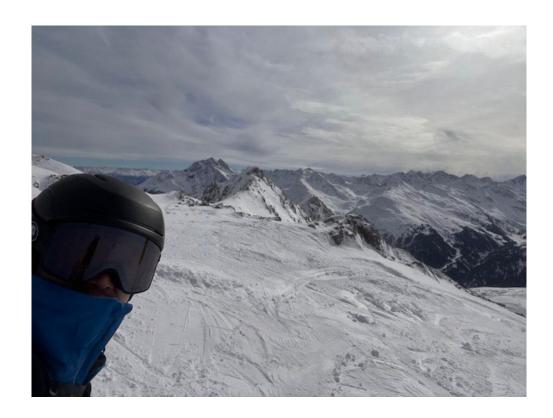
- Ketamin, Capcaicin

Referenzen

- <u>Diagnostik und Therapie neuropathischer Schmerzen (aerzteblatt.de)</u>
- Choy EH et al. Safety and tolerability of duloxetine in the treatment of patients with fibromyalgia: pooled analysis of data from five clinical trials. Clin Rheumatol 2009;28(9):1035-44.
- NB. et al. Finnerup, Pharmacotherapy for neuropathic pain in adults: a systemic Review and meta-analysis. Lancet Neurol. 2025 Feb;14(2):162-173.
- Gilron J et al. Nortriptyline and gabapentin, alone and in combination for neuropathic pain: a double-blind, randomised controlled crossover trial. Lancet 2009; 374: 1252–61
- JA. Petersen und T. Schlereth. Diagnostik und Therapie neuropathischer Schmerzen. Fortbildung Psychiatrie und Neurologie.
- M Thouaye, I Yalicin. Neuropathic pain: From actual pharmacological treatments to new therapeutic horizons. Pharmacology & Therapeutics. 251 (2023) Elsevier.
- Wernicke JF et al. A randomized controlled trial of duloxetine in diabetic peripheral neuropathic pain. Neurology 2006;67(5):1411-20

Conflict of Interest

Mepha, Pfizer, Grünenthal, Sanofi


B. Braun Medical AG, Mundipharma Medical company, Astra Zenica, Individor, Allmiral,

Icumed, Neuraxpharm, Mediservice AG

GE Healthcare, Vygon, Sono Site, Philipps

Medtronic (Schweiz) AG, Boston Scientific, Abbott, Nevro

Danke

