

EULAR Highlights 2024 Myositis

Britta Maurer, Department of Rheumatology & Immunology, University Hospital Bern, Switzerland

MINSELGRUPPE

COI

Research: AbbVie, Protagen, Novartis Biomedical; patent mir-29 for the treatment of systemic sclerosis issued (US8247389, EP2331143)

Lecturing: Boehringer-Ingelheim, GSK, Novartis, Otsuka

Consulting: Novartis, Boehringer Ingelheim, Janssen-Cilag, GSK

Congress support: Medtalk, Pfizer, Roche, Actelion, Mepha, MSD

Advisory Boards: Boehringer-Ingelheim, Janssen-Cilag

Content

- Auto-antibodies
- Treatment

Inflammatory Myopathies

Dermatomyositis

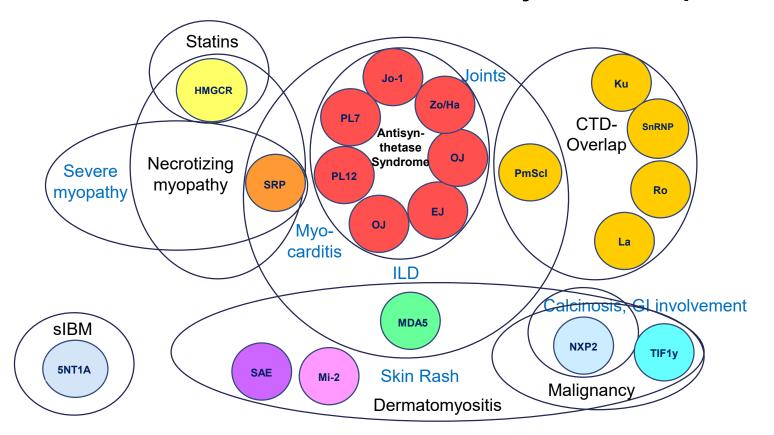
(Polymyositis)

Antisynthetase Syndrome

Immune-mediated necrotizing Myopathy

Cancer-associated Myositis

Overlap-Myositis (e.g. with systemic sclerosis, rheumatoid arthritis)


Secondary myositis (connective tissue disease, vasculitis, sarcoidosis)

Sporadic inclusion body myositis

Auto-antibodies

MINSELGRUPPE Disorders of the Myositis Spectrum

MINSELGRUPPE

Navigating Complexities of Multiple Positive Myositis Autoantibodies

Background

- Myositis-specific autoantibodies (MSAs) considered mutually exclusive
- Multiple positivities rare using immunoprecipitation (=reference standard)
- Techniques, favored in clinical practice, e.g. ELISA and Line Blot Immunoassay (LIA) associated with increased rates of multiple positivity and probability of false positivity

Aim

 To evaluate real-life prevalence and clinical meaning of multiple seropositivity for MSA and Myositis Associated Antibodies (MAAs) in the Classification Criteria of Anti-Synthetase Syndrome (CLASS) cohort

MINSELGRUPPE

Navigating Complexities of Multiple Positive Myositis Autoantibodies

Results

- Seropositivity for MSA/MAA confirmed in 2832 patients (67.8%)
- Multiple seropositivity by LIA in 43.7%, ELISA in 33.7%, IP in 24%
- True multiple seropositivity for MSAs in 7.9%, clinically presenting with corresponding characteristic features

Conclusions

- Validity of results of immunoassays should be evaluated by congruent indirect immunofluorescence staining (positivity for ANA/Hep2 cytoplasm, pattern matching antigen)
- If in doubt, another sample should be send out to another accredited lab

Seronegative Myositis

Background

- Autoantibodies considered pathogenic key players in myositis
- Up to 20-40% of IIM patients, even those with typical clinical manifestations, test seronegative for known myositis-specific autoantibodies

Aim

To detect novel autoantigens

MINSELGRUPPE Seronegative Myositis

Results

- Novel autoantigen FHL1 (Four-and a-half-LIM-domain 1), expressed in cytoplasm of skeletal and heart muscle (FHL1)
 - Found in 27% of previously negatively tested patients with IIM (ELISA)
- Autogenic properties found for 16/19 cytoplasmic aaRs and aaRs complex interaction proteins in myositis patients
 - 33% of previously negatively tested patients (multiplex bead array assay, confirmed by ELISA & WB)

Conclusion

- Cytoplasmic auto-antibodies not yet detectable by commercial testing may account for "seronegativity" in myositis
- IIF should include both antinuclear and anticytoplasmic staining

Pathogenicity of Auto-Antibodies

Background

Auto-antibodies thought to be pathogenic by activating the immune system

Aim

- To evaluate whether myositis auto-abs interfere with their autoantigens within the muscles and thereby compromise the normal function of these proteins
- Methods
 - Confocal microscopy, bulk RNA sequencing, transfection of cultured myoblasts with human auto-antibodies, followed by bulk RNA sequencing

PINSELGRUPPE Pathogenicity of Auto-Antibodies

Results

- Auto-ab accumulation in myofibers within the same subcellular compartment as the autoantigen (e.g. nuclear for Mi2, PmScl, cytoplasmic for MDA5, aaRs, HMGCR; NXP2/TIFy although nuclear autoantigens dissociate into the cytoplasm)
- Associated with protein dysfunction (e.g. derepression of genes normally repressed by Mi2/NuRD, accumulation of RNAs degraded by the nuclear RNA exosome in patients with anti-PM/Scl autoantibodies targeting this complex, activation of transcription of type IFNs by MDA5, overexpression of genes through aaR dysfunction in ASS, accumulation of lipids within myofibers of anti-HMGCR-positive patients)
- Transfected myoblasts recapitulated the transcriptomic phenotypes observed in human disease

Conclusion

Auto-abs directly disrupt protein functions in muscle fibers, mechanism may be relevant in other tissues

Pinal-Fernandez I, et al. medRxiv preprint doi: https://doi.org/10.1101/2024.01.15.24301339

Treatment

MINSELGRUPPE

Cellular Targeted Therapies – Clinical Trials

	Target	Name	Trial	Phase	Results
	B cells CD20 BAFF CD19	Rituximab Belimumab CAR T Cells	RIM RECITAL EVER-ILD NCT02347891 9 different trials		Negative Positive Positive Negative Recruiting
	T cells CD80/CD86	Abatacept	ARTEMIS NCT02971683 NCT03215927		Reassuring Negative In progress
3	Dendritic cells ILT7	Daxdilimab	NCT05669014	II	In progress

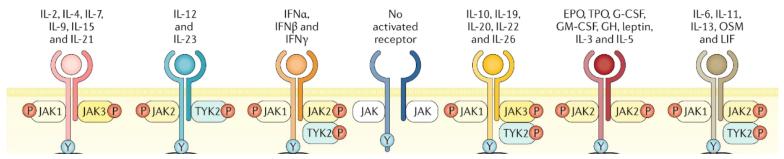
MINSELGRUPPE Cellular Targeted Therapies – Additional Data

Rituximab

- Literature review: 48 studies (458 IIM patients): 78.3% rate of clinical response
- Meta-analysis of IIM-associated ILD: seven trials and 121 patients: overall improvement in 65%, complete response in 35%; improvement in muscle strength, skin involvement and pulmonary function
- Prospective study: 50 IIM patients: effectiveness of 86%, GC taper in 78.7%

Daratumumab

Anti-CD38 monoclonal ab; 3 refractory cases with good response


CD19 CAR T Cells

 3 patients with IIM; all had an ACR–EULAR major clinical response and normalization of CK levels after 3 months and maintained these responses; muscular functional normalized; extramuscular disease activity vanished

Small Molecules – Clinical Trials

Target	Name	Trial	Phase	Results
JAK1/3/(2) JAK1/2 JAK1/TYK2 TYK2	Tofacitinib Baricitinib Brepocitinib GLPG3667	NCT04966884 NCT04972760 NCT05437263 GALARISSO	IV III III	Positive In progress In progress In progress

Salas, A et al. Nat Rev Gastroenterol Hepatol 17, 323-337 (2020)

Small Molecules – Additional Data

Recent meta-analysis on JAKi in IIM

- 7 publications with a total of 91 patients
- Ruxolitinib ≥ tofacitinib > baracitinib
- Effective regarding skin, muscle, and lung involvement

Anti-Cytokine Therapies – Clinical Trials

Target	Name	Trial	Phase	Results
Cytokines	A 'C	NOT00070054		N. C
Type I IFN receptor	Anifrolumab	NCT00979654 D3463C00003	 -	Negative In progress
IL-6	PF-06823859 Tocilizumab	NCT03181893 NCT04181762		Positive Negative
IL-12/23 IL-1	Ustekinumab Anakinra	NCT03981744 NCT01165008	 /	Negative Reassuring
IL-2	Aldesleukin	NCT05495321	III	In progress

MINSELGRUPPE Anti-Cytokine Therapies – Additional Data

Anti-TNFα inhibitors

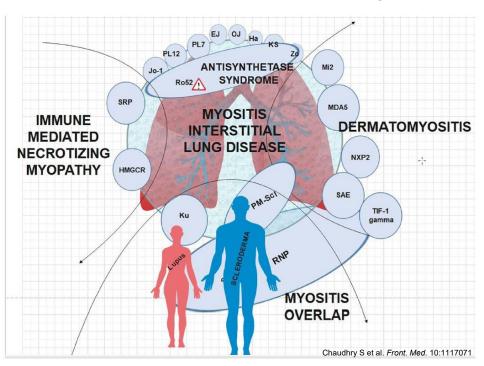
 Data from RCTs and open label studies conflicting; should not be used outside clinical trials

Tocilizumab (Anti-IL-6R)

 Data from open label studies rather disappointing; showed efficacy in small case series with refractory antisynthetase syndrome or rapidly progressing ILD (RP-ILD) or refractory IMNM

Anakinra (Anti-IL-1R)

 Used successfully in antisynthetase syndrome with myocardial involvement; systematic literature review identified 4 cases with improvement of muscular, lung and heart manifestations



Diverse Targeted Therapies – Clinical Trials

Target	Name	Trial	Phase	Results
Complement pathway C5	Ravulizumab	NCT04999020	11/111	In progress
FC receptors FcRn	Nipocalimab Efgartigimod	NCT05379634 ALKIVIA	 	In progress In progress

Anti-fibrotic Therapy in IIM-ILD

- Nintedanib approved for patients with progressive fibrosing phenotype including patients with IIM-ILD (INBUILD trial)
- Pirfenidone may have survival benefit in subacute ILD
 - 2 trials in DM-associated ILD (NCT02821689, NCT03857854)

PINSELGRUPPE References for treatment

- Oddis CV, et al. Arthritis Rheum 2013;65:314-24
- de Souza FHC et al. Adv Rheumatol 2018;58:31
- Maher TM, et al. Lancet Respir Med2023;11:45-54
- Mankikian J, et al. Eur Respir J 2023;61:2202071
- Oliveira T, et al. Rheumatology (Oxford) 2023;62:e211-2
- Holzer MT, et al. Chest. 2023 Jan;163(1):e1-e5
- Landon-Cardinal O, et al. Ann Rheum Dis 2023;82:579-580
- Chua CG, et al. Clin Exp Rheumatol. 2024 Feb;42(2):460-461
- Mueller F, et al. N Engl J Med 2024;390:687-700
- Ma C, et al. Front Immunol. 2024 Mar 21;15:1382728
- Murphy SM, et al. Rheumatology (Oxford) 2016;55:2277-8
- Beaumel A, et al. Joint Bone Spine 2016; 83:361-2
- ZhangX, et al. Rheumatology (Oxford) 2021;60:e227-28
- Campochiaro C, et al. J Rheumatol 2023;50:151-3
- Wells AU, et al. Lancet Respir Med 2020;8(5):453e60
- Cottin V, et al. Respir Res 2021;22(1):84
- Liang J, et al. Front Med 2021;8
- Li T, et al. Sci Rep 2016;6:33226

Thank you for your attention!

Britta.maurer@insel.ch